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abstract

The Solenoid and Warsawanoid Are Sharkovskii Spaces

Tyler Willes Hills
Department of Mathematics, BYU

Master of Science

We extend Sharkovskii’s theorem concerning orbit lengths of endomorphisms of the real line
to endomorphisms of a path component of the solenoid and certain subspaces of the War-
sawanoid. In particular, Sharkovskii showed that if there exists an orbit of length 3 then
there exist orbits of all lengths. The solenoid is the inverse limit of double covers over the
circle, and the Warsawanoid is the inverse limit of double covers over the Warsaw circle. We
show Sharkovskii’s result is true for path components of the solenoid and certain subspaces
of the Warsawanoid.

Keywords: Sharkovskii theorem, covering spaces, solenoid, Warsawanoid, inverse limit, War-
saw circle
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Chapter 1. Introduction

[1, 1-3] Sharkovskii’s Theorem is a well-known result in dynamical systems. It is named after

Oleksandr Mikolaiovich Sharkovskii, a prominent Ukrainian mathematician, who submitted

a paper titled Coexistence of cycles of a continuous mapping of a line into itself to the

Ukrainian Mathematical Journal in 1962. The paper was published by the journal in 1964.

The paper provided a proof to the following theorem: If a continuous mapping of the reals

into the reals has a point with fundamental period k, and if k < l with respect to a specific

special ordering, then the mapping also has a point with fundamental period l.

Despite its current popularity and use in many areas of Mathematics, the paper and its

theorem received very little recognition and prestige outside of Eastern Europe until the

late 1970’s. There are several potential reasons for this. First and foremost, the paper was

originally written in Russian and published in a Soviet journal. It is also possible that the

field of dynamical systems theory did not become fashionable until later. At any rate, it

was not until Tien-Yien Li and James Yorke published a famous paper titled Period three

implies chaos in 1975 that Sharkovskii’s work became well-known outside Eastern Europe.

1.1 3 Implies Chaos

[2] Li and Yorke were interested in mathematically modeling the evolution of natural pro-

cesses and phenomena, a branch of mathematics called dynamical systems. Of course, many

natural systems and phenomena can be modeled with differential equations or difference

equations, but they were interested in more simplistic situations where a system is evolving

through discrete states such that the nature of the system in each state can be expressed

by one number. What’s more, they required that the number xi+1 describing the system in

state i + 1 be obtainable by a continuous endomorphism f on an interval of the reals, such

1
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that f(xi) = xi+1 where xi is the number describing the state of the system in state i. Thus,

Li and Yorke were concerned with repeated iterations of a continuous endomorphism on a

real interval. This type of model provides a method to model population growth, the spread

of disease, financial markets, and many more situations of interest to researchers within pure

and applied mathematics.

This paper played a very influential role in the growth of dynamical systems theory by

sparking widespread interest in the field and its applications. There were many results in

the paper but one of the more famous ones was the following:

Theorem: 3 implies chaos. Let J ⊂ R be an interval, and let f : J → J be a continuous

function. If there exists a point x ∈ J such that f 3(x) = x, and fn(x) 6= x for n ∈ {1, 2},

then for each integer m ∈ N, there exists a point xm ∈ J such that fm(x) = x and fk(x) 6= x

for all l ∈ {1, 2, . . . , k − 1}.

This result was groundbreaking; as such, the paper gained popularity, and Li and Yorke

traveled to many conferences lecturing on their work. At one particular conference in East

Berlin, they met Sharkovskii, who pointed out that the result 3 implies chaos is a special case

of a more general theorem he had proved more than a decade earlier. This let to worldwide

recognition of Sharkovskii’s work.

1.2 Reworking the Theorem

[1, 1-3] It did not take long for the study of dynamical systems and chaos theory to increase

in popularity and to spread knowledge of Sharkovskii’s Theorem. As such, many mathe-

maticians worked to find shorter and simpler proofs of the Theorem. By 1980, three elegant

proofs of the theorem, all similar, were published by such prominent mathematicians as

2
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Guckenheimer, Block, Young and Misiurewicz, Morris and Ho, and Burkart. These proofs

relied extensively on the Intermediate Value Theorem and have become the ”standard”

proofs.

1.3 Dynamical Systems and Sharkovskii Today

Today, dynamical systems has become a central field of study in modern mathematics and has

allured the interest and work of some of the world’s brightest mathematicians. Sharkovskii’s

theorem is well-known as one of the field’s foundational and integral theorems. In fact,

Sharkovskii is honored as one of few mathematicians alive today with his name attached to

one of his results.

1.4 Generalizing Sharkovskii’s Theorem

Since 1975, mathematicians have been seeking other topological spaces on which continuous

endomorphisms satisfy the conclusion of Sharkovskii’s theorem; we refer to such spaces as

Sharkovskii spaces. [3] In 1980, Block, Guckenheimer, Misiurewicz, and Young published

a paper showing that S1, the one-dimensional sphere, is a Sharkovskii space. [4, 164] In

1985, Helga Schirmer first defined a Sharkovskii space as we have done here and proved that

an ordered topological space Y is Sharkovskii if and only Y is ordered densely and Y has

the least upper bound property for every subset of Y bounded above. [21] In 2012 Grant,

Conner, and Meilstrup published a paper with the title A Sharkovsky Theorem for non-

locally Connected Spaces showing that the following spaces are Sharkovskii: the topologist’s

sine curve, any n-fold union of topologist sine curves, the Warsaw circle, any n-fold cover of

the Warsaw circle, and any line of topologist sine curves.

3



www.manaraa.com

Even for spaces that are not Sharkovskii, much work has been done in studying periods of

orbits of self-maps. For work done on S1, reference [5] [6] [7]; for n-ods, reference [8] [9]

[10]; for trees, reference [11] [12]; for the figure-eight space, reference [13]; for further work

on Warsaw circle and k-Warsaw circle, reference [14] [15]; for hereditarily decomposable

chainable continua, reference [16].

It is worth noting that all the Sharkovskii spaces mentioned are one-dimensional, since

the theorem easily fails for many higher dimensional spaces. For example, rotating a two-

dimensional disk by angle 2π
3

is a clear counterexample. Thus, many weaker versions of

the theorem have been attempted for higher dimensional spaces, but none have gained the

widespread fame as the original theorem.

In this paper we provide two more Sharkovskii spaces: the inverse limit of double covers over

the circle, which we call the Solenoid, and an inverse limit of double covers over the Warsaw

circle, which we call the Warsawanoid.

Many mathematicians are still working to provide a classification of all Sharkovskii spaces.

4
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1.5 Sharkovskii’s Theorem

Before stating the theorem, we give a few definitions.

Definition 1.1.1: [17, 229-231] We define a new ordering of the Natural Numbers called

the Sharkovskii Ordering.

3 < 5 < 7 < 9 < 11 < . . .

< 2(3) < 2(5) < 2(7) < 2(9) < 2(11) < . . .

< 22(3) < 22(5) < 22(7) < 22(9) < 22(11) < . . .

< 23(3) < 23(5) < 23(7) < 23(9) < 23(11) < . . .

...

· · · < 24 < 23 < 22 < 2 < 1

Definition 1.1.2: Let f be a continuous function from an interval I ⊆ R to itself (the

interval need not be open or closed). Denote by fn the nth composition of f with itself. Let

x ∈ I. If fn(x) = x and fk(x) 6= x for all k ∈ N, 1 ≤ k < n, we say that x has orbit n. If

there exists an x with orbit n in the domain of f , we say that f has an n-orbit.

Theorem: Sharkovskii. Let f be a continuous function from an interval I ⊆ R to itself,

where I need not be closed or open. If f has an n-orbit, then f has an m-orbit for all m ≥ n

with respect to the Sharkovskii Ordering.

5
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1.6 Generalizing the Theorem to the Solenoid and Warsawanoid

The purpose of this paper is to extend the theorem to continuous endomorphisms on the

Solenoid, the inverse limit of double covers over the circle and the Warsawanoid, the inverse

limit of double covers over the Warsaw Circle.

Definition 1.1.3: Let f : X → X be a map on a space X. If the orbits of f satisfy the

conclusion of Sharkovskii’s Theorem, we say that f has the Sharkovskii Property. If every

map f : X → X has the Sharkovskii Property, we say X is a Sharkovskii Space.

Definition 1.1.4: [18, 2-3] Given topological spaces Xi and connecting maps fi : Xi+1 → Xi,

. . . X2 X1 X0
f2 f1 f0

the inverse limit is defined to be the unique subspace {(. . . x2, x1, x0)}| xi ∈ Xi and fi(xi+1) =

xi for all i } of the product space. Inverse limits come with canonical projections πi from

the inverse limit to each Xi, by sending a coherent sequence to its i-th coordinate. This is

a fact we will use extensively throughout this paper.

Inverse limits have the following Universal Mapping Property. If Y is a space and gi : Y → Xi

are maps satisfying gi = fi ◦ gi+1 for all i, then there exists a unique map ϕ from Y to the

inverse limit, X, making the diagram below commute.

X . . . Xi . . . X0

Y

πi

fi f0

gi

ϕ

g0

6
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Chapter 2. The Solenoid

Definition 2.1.1: For n ∈ N∪{0}, let Cn be the unit circle lying in the complex plane. Let

gn : Cn+1 → Cn defined by gn(x) = x2 be the connecting maps. We define the inverse limit

of this system to be The Solenoid, denoted throughout this chapter by S. The projection

maps from S to Cn we denote by πn : S → Cn.

2.1 Properties of the Solenoid

We develop a few important relationships between R and S.

Theorem 2.1.1: The point (. . . p2, p1, p0) is in the same path component of S as the point

(. . . 1, 1, 1), if and only if the sequence of real numbers {|2na(pn)|} is bounded as n goes to

infinity, where a(pn) ∈ [−π, π) is the argument of the complex number pn.

Proof: Recall that the projection maps from S to Cn are πn : S → Cn, and the connecting

maps are gn : Cn+1 → Cn defined by gn(x) = x2. Then we have the compatible maps

gi,j : Ci → Cj defined by gi,j(x) = x2
i−j

.

If α is a path in S between (. . . p2, p1, p0) and (. . . 1, 1, 1), then αi = πi ◦ α is a path in Ci

between 1 and pi for all i. We note that αi may have a winding number around Ci bigger than

one. For this reason, let βi be the shortest path from 1 to pi in Ci. Then, the compositions

gi,0 ◦ πi ◦ α and gi,0 ◦ βi are paths in C0.

I

S Ci C0

α βiαi α0

πi

π0

gi,0

7
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We compare their winding numbers. Let w be the winding number of a path in C0, then for

every n, we have |2n a(pn)
2π
| = |w(gn,0 ◦ βn)| ≤ |w(gn,0 ◦ αn)| = |w(α0)| ∈ R. Thus, for every

n, |2na(pn)| ≤ 2π|w(α0)|, where the right hand side is a fixed real number. This proves one

directional implication.

For the converse, suppose {|2na(pn)|} is bounded as n goes to infinity. Then, the limit of

{|a(pn)|} is zero. Define the maps bn : R → Cn by bn(x) = e
πix

2n−1 . The space R, along with

the maps bn, is a system compatible with the inverse system (Cn, πn); thus, by the universal

mapping property of inverse limits, there exists a unique map lim←− bn : R → S making the

diagram commute.

S . . . Cn . . . C1 C0

R

πn

gn g1 g0

bn

lim←− bn

b1
b0

However, the map B : R→ S defined by B(x) = (. . . , e
πix
22 , e

πix
2 , eπix, e2πix) obviously makes

the diagram commute, so by uniqueness, lim←− bn = B. Now, there exists k ∈ N such that for

all natural numbers m ≥ k, we have |a(pm)| < π
2
.

Case 1. a(pk) ≥ 0. We can write pk = eπiθk where π
2
> a(pk) = πθk ≥ 0. Normally we

would not know pk+1, since there are two possibilities it could be; however, the fact that π
2
>

|a(pk+1)| ≥ 0 implies that a(pk+1) = πθk
2

, so a(pk+1) = e
πiθk
2 . In fact, inductively for m ≥ k, if

we know a(pm) = πθm, then we know that a(pm+1) = πθm
2

. Working the other way, we know

that a(pk−1) = 2a(pk). Thus, pk−1 = eπi2θk . By using the relation p2i = pi−1, we conclude that

p0 = eπi2
kθk , and (. . . , pk+1, pk, . . . , p1, p0) = (. . . , e

πiθk
2 , eπiθk , . . . , eπi2

k−1θk , eπi2
kθk). Thus, if

x = 2k−1, then B(x) = (. . . , p2, p1, p0).

8
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Case 2. a(pk) < 0. This case is similar to case 1 except we write pk = eπiθk where −π
2
< πθk <

0. As in case 1, we have (. . . , pk+1, pk, . . . , p1, p0) = (. . . , e
πiθk
2 , eπiθk , . . . , eπi2

k−1θk , eπi2
kθk), and

if x = 2k−1, then B(x) = (. . . , p2, p1, p0).

This argument suffices to prove (. . . p2, p1, p0) is in the same path component of S as the

point (. . . 1, 1, 1).

Proposition 2.1.1: There exists a continuous bijective function B from R to the path

component of S containing the point (. . . 1, 1, 1).

Proof: As in the proof of Theorem 2.1.1, we define the maps bn : R→ Cn by bn(x) = e
πix

2n−1 .

Thus we get the unique map B = (. . . , e
πix
22 , e

πix
2 , eπix, e2πix) making the diagram commute.

S . . . Cn . . . C1 C0

R

πn

gn g1 g0

bn

B

b1
b0

We show B is injective. Suppose by way of contradiction, there exist real numbers x 6= y

such that B(x) = B(y). Then, B0(x) = B0(y) implies e2πix = e2πiy implying |x − y| ∈ N.

By factoring, we can write |x − y| = 2km where k and m are integers, k ≥ 0, m > 0, and

2 - m. In other words, 2k+1 - |x− y|. However, Bk+1(x) = Bk+1(y) implies e
πix

2k = e
πiy

2k , which

implies 2k+1 | |x− y|. This is a contradiction, and we conclude B is injective.

To show B is surjective onto the path component containing (. . . 1, 1, 1), let (. . . p2, p1, p0) be

a point in the path component. Then, by Theorem 2.1.1, we know the sequence {|a(pn)|}

converges to zero as n goes to infinity. The argument used in the proof of the converse of

Theorem 2.1.1 shows that there exists x ∈ R such that B(x) = (. . . p2, p1, p0). Thus, B is

surjective onto the path component containing (. . . , 1, 1, 1), and B : R → S is a bijective

map.

9
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We have the very useful criterion for determining when two points of S are in the same path

component.

Corollary 2.1.1: Two points (. . . , b1, b0) and (. . . , c1, c0) in S are in the same path com-

ponent if and only if the sequence |2na( bn
cn

)| is bounded as n goes to infinity, where a( bn
cn

) ∈

[−π, π) is the argument of the complex number bn
cn

.

Proof: The points (. . . , b1, b0) and (. . . , c1, c0) are in the same path component if and only

if the points (. . . , b1
c1
, b0
c0

) and (. . . , 1, 1, 1) are in the same path component (because S is

homogeneous); but (. . . , b1
c1
, b0
c0

) and (. . . , 1, 1, 1) are in the same path component if and only

if the sequence {|2na( bn
cn

)|} is bounded as n goes to infinity.

Corollary 2.1.2: There exists a bijective map from R→ L where L is any path component

of S.

Proof: This follows from Proposition 2.1.1 and the fact that S is homogeneous.

Proposition 2.1.2: Let I be any interval of R and α : I → S be any map. Then α has a

lift α̃ to R such that α = B ◦ α̃. Thus, R is a fibration over a path component of S, since

any path in S can lift to a path in R.

Proof: Since B is a bijection between R and a path component, L of S, then the inverse

function B−1 : L→ R exists, though it is not continuous. The composition π0 ◦ α is a path

in C0. Fix x ∈ I and let Ox be a connected open neighborhood ofC0, small enough so as not

to cover the circle C0 but containing the point π0(α(0)). The preimage of Ox under π0 is

open by continuity, so we can take a neighborhood Wx of α(x) so that the path component,

Px, of Wx containing α(x) satisfies π0(Px) = Ox. Now, B is continuous, so the preimage of

Wx is open R, thus it is a union of open intervals. The point B−1(α(x)) is in one of these

intervals, call it Vx. B restricted to the closure of Vx is a homeomorphism onto its image,

therefore B(Vx) = Px, or put another way, Vx = B−1(Px), and Px is the homeomorphic

10
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image of the open interval Vx. The preimage of Wx is open in I by continuity, so there

exists a connected open neighborhood Ux about x so that α(Ux) ⊂ Wx. However, since Ux

is connected, and α is continuous, we have the stronger result α(Ux) ⊂ Px. We now define

the map lUx : Ox ⊂ C0 → B−1(Px) so that for each w ∈ Px we have lUx(π0(w)) = B−1(w).

We then define the map α̃Ux : Ux ⊂ I → B−1(Px) by α̃Ux = lUx ◦ π0 ◦ α|Ux .

B−1(Px) ⊂ R

Ux ⊂ I Px

Ox ⊂ C0

B

π0◦α

α

π0

lUx

If two maps α̃Ux and α̃Uy have overlapping domains Ux and Uy, so that z ∈ Ux ∩ Uy, then

α̃Ux(z) = lUx(π0(α(z))) = B−1(α(z)) = α̃Uy(z). Thus the two maps agree on their over-

lapping domains. We then have a well-defined map α̃ : I → R defined for x ∈ I by

α̃(x) = α̃Ux(x). To conclude the proof, we observe that for x ∈ I, we have (B ◦ α̃)(x) =

B(α̃(x)) = B(α̃Ux(x)) = B(B−1(α(x))) = α(x).

R

I S

B
α̃

α

Proposition 2.1.3: Let L denote a path component of S. If g : L→ L is continuous, then

B−1 ◦ g ◦B : R→ R is continuous.

Proof: We have the following diagram

R R

L L

B−1◦g◦B

B B

g cts.

11



www.manaraa.com

To see that B−1 ◦ g ◦B : R→ R is continuous, let x be an image point in R, and let t be in

the pre-image of x. Choose a connected open interval Vx with length less than one containing

x. Since B restricted to the closure of Vx is a homeomorphism onto the image B(cl(Vx))

with the subspace topology, we have B(Vx) = Px is a connected open set in B(cl(Vx)). By

definition of the subspace topology, Px = Wx ∩B(cl(Vx)) for an open set Wx of S; therefore

Px is a path component of Wx. The composition g ◦ B is continuous, so the preimage

of Wx under this composition is open in R, thus it is a union of open intervals. One of

them contains t, so we can choose a small connected neighborhood Ux containing t so that

(g ◦ B)(Ux) ⊂ Wx. But since Ux is connected and g ◦ B is continuous, we have the stronger

result that (g◦B)(Ux) = g(B(Ux)) ⊂ Px. This implies that B−1(g(B(Ux))) ⊂ B−1(Px) = Vx.

This is sufficient to conclude the proof.

2.2 The Solenoid is a Sharkovskii Space

We have the following theorem.

Theorem 2.2.1: If g is a continuous function from a path component L, of S to itself, then

g has the Sharkovskii Property. Therefore, L is a Sharkovskii Space.

Proof: The following computation shows that B−1 ◦ g ◦ B has an n-orbit if and only if g

has an n-orbit.

(B−1 ◦ g ◦B)n(x) = x

⇐⇒(B−1 ◦ gn ◦B)(x) = x

⇐⇒(gn ◦B)(x) = B(x)

⇐⇒gn(B(x)) = B(x)

12
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Since B−1 ◦g◦B is a continuous map from R to R, it has the Sharkovskii property. However,

the previous computation shows that g must also have the Sharkovskii Property. Since g

was an arbitrary map from L to itself, we conclude that L is a Sharkovskii Space.

Chapter 3. The Warsawanoid

3.1 The Warsaw Circle

The Solenoid is the inverse limit of circles with connecting maps gi(x) = x2. If we define new

connecting maps between circles, we will have a new inverse system with a different inverse

limit.

Definition 3.1.1 For each i ∈ N ∪ {0}, let Ci be the unit circle in the complex plane

parametrized by angle. Define the maps fi : Ci+1 → Ci to be the following quotient map

f(Ci+1) = Ci
2π
3
+ε= 2π

3
−ε and π

3
+ε=π

3
−ε for ε ∈ [0, π

3
]. The inverse limit of the inverse system (Ci)

with maps (fi) we call the Warsaw Circle.

This quotient map can have the following geometric interpretation.

q3

D3

q2

D2

q1

D1

q0

D0

1

This motivates the next section.

13
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3.2 A 2 by 2 Diagram of Inverse Limits and the Warsawanoid

Definition 3.2.1: For i, j ∈ N∪{0}, let Ci,j be the unit circle in the complex plane. Define

the maps gi,j : Ci+1,j → Ci,j by gi,j(x) = x2 so that Ci+1,j is a double cover of Ci,j with

covering map gi,j. Also define h0,j : C0,j+1 → C0,j to be the quotient map f from definition

3.1.1

Recall the fact that every map between spaces induces a map between the fundamental

groups of the spaces.

Proposition 3.2.1: Let f : C0,1 → C0,0 be the quotient map given in definition 3.2.1.

Then the induced map f∗ : π1(C0,1) → π1(C0,0) from the fundamental group of C0,1 to the

fundamental group of C0,0 is an isomorphism.

Proof: The fundamental groups of both spaces are isomorphic to Z, and f∗ maps the

generator of π1(C0,1) to the generator of π1(C0,0). It is a basic fact that f∗ is an isomorphism.

Proposition 3.2.2: Let h0,j : C0,j+1 → C0,j be the map defined in definition 3.2.1; the map

h0,j ◦g0,j+1 : C1,j+1 → C0,j lifts to a map h1,j : C1,j+1 → C1,j such that g0,j ◦h1,j = h0,j ◦g0,j+1.

Proof: We use the Lifting Criterion [19, 61-62]. The composition h0,j ◦ g0,j+1 is a map from

C1,j+1 to C0,j, so it has an induced map between π1(C1,j+1) and π1(C0,j), both of which are

isomorphic to Z. The image of π1(C1,j+1) in π1(C0,j) under the map is isomorphic to 2Z

because of the map g0,j+1. However, the map g0,j : C1,j → C0,j double covers C0,j making

C1,j a covering space of C0,j. Again, the image of π1(C1,j) under the induced homomorphism

is isomorphic to 2Z. Therefore, by the lifting criterion, we can lift the map h0,j ◦ g0,j+1 :

C1,j+1 → C0,j to a map, h1,j : C1,j+1 → C1,j such that g0,j ◦ h1,j = h0,j ◦ g0,j+1.

14
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In fact, we can inductively define hi+1,j : Ci+1,j+1 → Ci+1,j such that gi,j ◦hi+1,j = hi,j ◦gi,j+1.

Here’s the inductive construction. If hi,j : Ci,j+1 → Ci,j is given, define hi+1,j : Ci+1,j+1 →

Ci+1,j to be the lift of hi,j ◦ gi,j+1 such that gi,j ◦hi+1,j = hi,j ◦ gi,j+1. Such a lift exists by the

Lifting Criterion, since the image of π1(Ci+1,j+1) in π1(Ci,j) under the induced homomorphism

is isomorphic to 2Z which is contained in the image of π1(Ci+1,j), also isomorphic to 2Z, in

π1(Ci,j) under the homomorphism induced from the covering map gi,j.

Definition 3.2.2: Define hi+1,j : Ci+1,j+1 → Ci+1,j to be the lift of hi,j ◦ gi,j+1 : Ci+1,j+1 →

Ci,j making gi,j ◦ hi+1,j = hi,j ◦ gi,j+1.

This gives us the following commutative diagram for all i, j.

Ci+1,j+1 Ci+1,j

Ci,j+1 Ci,j

hi+1,j

gi,j+1 gi,j

hi,j

Definition 3.2.3: For fixed j, the inverse limit of the system (Ci,j) with maps (gi,j) is a

solenoid which we call Sj with projection maps πi,j : Sj → Ci,j. For fixed i, the inverse limit

of the system (Ci,j) with maps (hi,j) is a Warsaw Circle which we call WCi with projection

maps Pi,j : WCi → Ci,j.

The universal mapping property of inverse limits enables us to make the following definition.

Definition 3.2.4: Fix j. Let Hj : Sj+1 → Sj = lim←−(hi,j ◦ πi,j+1) be the unique map such

that πi,j ◦Hj = hi,j ◦ πi,j+1. Similarly, for fixed i, let Gi : WCi+1 → WCi = lim←−(gi,j ◦ Pi+1,j)

be the unique map such that gi,j ◦ Pi+1,j = Pi,j ◦Gi.

Definition 3.2.5: The inverse system (WCi) with connecting maps (Gi) has as its inverse

limit The Warsawanoid, denoted by W , with projection maps Γi : W → WCi.

Fact: [20, 72] Inverse limits commute, which is another way of saying that the Warsawanoid

is also the inverse limit of the inverse system (Sj) with maps (Hj).

15
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Definition: 3.2.6: The Warsawanoid is the inverse limit of the inverse system (Sj), (Hj).

The projection maps are ηj : W → SJ .

Proposition 2.1.1 from section 2 assures the existence of a continuous bijection between R

and any path component of a solenoid. Therefore, we give the following definition.

Definition 3.2.7: Denote by Lj a copy of R equipped with a continuous bijection Bj :

R→ L where L is a path component of the solenoid Sj. We remind the reader that Lj is a

fibration over L, that is, paths in L can be lifted to paths in Lj.

The composition Hj ◦ Bj+1 : Lj+1 → Sj is a map from R to a path component of Sj. By

proposition 2.1.2, it has a lift, Hj : Lj+1 → Lj such that Bj ◦Hj = Hj ◦Bj+1.

Definition 3.2.8: Let γj : Lj+1 → Lj be the map promised by proposition 2.1.2 such

that Bj ◦ γj = Hj ◦ Bj+1. Further, we define the inverse limit of the inverse system (Lj)

with connecting maps (γj) to be the Warsaw Line denoted by Lω. The projection maps are

βj : Lω → Lj.

3.3 Properties of the Warsawanoid

For a path component K0, of S0, it has a unique preimage path component K1 in S1 under

H0. Inductively, if Kj is the unique preimage path component in Sj of Kj−1 in Sj−1 under

Hj−1, then let Kj+1 be the unique preimage path component in Sj+1 of Kj under Hj. The

path components Kj with connecting maps Hj motivate the next definition.

Definition 3.3.1: We define a Warsawanoid Leaf L′ to be the subspace of coherent se-

quences (. . . , x1, x0) ∈ W such that for all j, xj ∈ Kj, where Kj is the unique path component

of Sj satisfying Hj−1(Kj) = Kj−1 for path component Kj−1 ⊂ Sj−1.

16
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Proposition 3.3.1: There exists a continuous bijection, B̃, between the Warsaw Line Lω

and L′.

Proof: The maps Bj ◦ βj are compatible maps from Lω to Sj. By the universal mapping

property, we obtain a unique map B̃ = lim←−(Bj ◦ βj) from Lω to W making all diagrams

commute. This map is B̃(...x2, x1, x0) = (..., B2(x2), B1(x1), B0(x0)), for all coherent se-

quences (xi) ∈ Lω. To show this is indeed the unique map promised by the universal

mapping property, observe that Bj is a bijection, so B−1j exists. Thus, Hj(Bj+1(xj+1)) =

(Bj ◦Hj ◦B−1j+1)(Bj+1(xj+1)) = Bj(Hj(xj+1) = Bj(xj).

Lj+1 LJ

Kj+1 Kj

γj

Bj+1 Bj

Hj

To show B̃ is injective, suppose (. . . , x2, x1, x0) 6= (. . . , y2, y1, y0) are coherent sequences in

Lω. Then, for some n we have xn 6= yn, implying Bn(xn) 6= Bn(yn) since Bn is injective.

Thus, (. . . , B1(x1), B0(x0)) 6= (. . . , B1(y1), B0(y0)), since Bn(xn) 6= Bn(yn). By definition of

B̃ we have B̃(. . . , x2, x1, x0) 6= B̃(. . . , y2, y1, y0).

To show B̃ is surjective, suppose (. . . , x2, x1, x0) is an element of L′, so it is a coher-

ent sequence. Then because of the commutativity of the diagram above, the sequence

(. . . , B−1(x2), B
−1(x1), B

−1(x0)) is also coherent, so it is a point in Lω, and it is the preim-

age of (. . . , x2, x1, x0) under B̃. Therefore B̃−1 exists, and has formula B̃−1(. . . , x2, x1, x0) =

(. . . , B−12 (x2), B
−1
1 (x1), B

−1
0 (x0)) for (. . . , x2, x1, x0) ∈ L′. This concludes the proof.

Definition 3.3.2: Denote by Iω The topologist’s sine curve.

Proposition 3.3.2: If α is a map from Iω to L′, then there exists a lift, α̃ : Iω → Lω

such that α = B̃ ◦ α̃. This proposition shows there exists ”Iω”-lifting for L′, analogous to

path-lifting for a path component of the solenoid.
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Proof: Let x ∈ Lω. We have α(x) ∈ L′, so we can write α(x) as a coherent sequence

(. . . , k1, k0). Therefore, ηj(α(x)) = kj ∈ Sj. The composition π0,j ◦ηj ◦α is a map from Iω to

C0,j. Let Ox be a connected open set of C0,j that contains π0,j(ηj(α(x)) = π0,j(kj)) such that

Ox does not cover all of C0,j. By continuity, we can take an open neighborhood Wx of Sj so

that Px, the path component of Wx containing kj satisfies π0,j(Px) = Ox. Since Wx is open

in Sj and Bj is continuous, its preimage is open and so is a union of open intervals in R.

Let Vx be the one containing B−1j (kj) so that Bj(Vx) = Px, or equivalently, Vx = B−1j (Px).

We define a map lUx,j : Ox → Vx where for z ∈ Px, we have lUx,j(π0,j(z)) = B−1j (z). We

observe that (Bj ◦ (lUx,j ◦ π0,j)(z) = Bj(lUx,j(π0,j(z))) = Bj(B
−1
j (z)) = z. Then, the function

α̃Ux,j = lUx,j ◦π0,j ◦ ηj ◦α|Ux is continuous from a connected open neighborhood Ux of x ∈ Iω
to Vx ⊂ Lj. The following detail must be mentioned: We can only choose a connected open

neighborhood of x if x does not lie on a vertical line in Lω. However, if it does, we can take

Ux to be the vertical path component of the neighborhood of x.

Lj

Ux ⊂ Iω L′ Kj

C0,j

Bj

α P∞,j

π0,j

lj,Ux

Suppose α̃Ux,j and α̃Uy ,j have overlapping domains, so that w ∈ Ux∩Uy where Ux and Uy are

open sets in Iω. Then, α̃Ux,j(w) = (lUx,j ◦ π0,j ◦ ηj ◦ α|Ux)(w) = lUx,j(π0,j(ηj(α(w)))) =

B−1(ηj(α(w))) = lUy ,j(π0,j(ηj(α(w)))) = (lUy ,j ◦ π0,j ◦ ηj ◦ α|Uy)(w) = α̃Uy ,j(w). Thus,

α̃Ux,j and α̃Uy ,j agree on their overlapping domains. We define the map α̃j(x) : Iω → Lj

by α̃j(x) = α̃Ux,j(x), which is well-defined for all x ∈ Iω. Fix x ∈ Iω, we can write

α(x) ∈ L′ as a coherent sequence (. . . , k1, k0), so that ηj(α(x)) = kj. Now observe the fol-

lowing computation: (Bj ◦ α̃j)(x) = Bj(α̃j(x)) = Bj(α̃Ux,j(x)) = Bj(lUx,j(π0,j(ηj(α(x))))) =

Bj(B
−1
j (ηj(α(x)))) = ηj(α(x)) = (ηj ◦ α)(x) = kj. Thus the following diagram commutes
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Lj

Iω Kj

Bj

α̃j

ηj◦α

However, recall the following commutative diagram.

Lj+1 LJ

Kj+1 Kj

γj

Bj+1 Bj

Hj

The commutativity of these two diagrams imply α̃j = γj ◦ α̃j+1. Thus, the space Iω with

the maps α̃j are compatible with the inverse system (Lj, γj). So by the universal mapping

property, we get a unique map α̃ = lim←− α̃j : Iω → Lω with formula α̃(x) = (. . . , α̃1(x), α̃0(x)).

We are at last able to show that α = B̃ ◦ α̃. Let x ∈ Iω be arbitrary. Then, α(x) ∈ L′,

so α(x) = (. . . , k1, k0) where Hj(kj+1) = kj. But we showed above that (Bj ◦ α̃j)(x) =

Bj(α̃j(x)) = kj for all j. Therefore, (B̃ ◦ α̃)(x) = B̃(α̃(x)) = B̃(. . . , α̃1(x), α̃0(x)) =

(. . . , B1(α̃1(x)), B0(α̃0(x))) = (. . . , k1, k0) = α(x). Since x ∈ Iω was arbitrary, we conclude

that α = B̃ ◦ α̃.

Proposition 3.3.3: If g : L′ → L′ is continuous, then B̃−1 ◦ g ◦ B̃ : Lω → Lω is continuous.

Proof: Fix j, and let x ∈ Lω be an arbitrary fixed point. We denote g(B̃(x)) ∈ L′ by the

coherent sequence (. . . , k1, k0), so that ηj(g(B̃(x))) = ηj((. . . , k1, k0)) = kj. We let Ox ⊂ C0,j

be a connected neighborhood of π(0,j)(kj) not covering all of C0,j. Continuity lets us find a

neighborhood Wx in Sj of kj so that Px is the path component of Wx containing kj where

π0,j(Px) = Ox. By arguments similar to the ones used in the proofs of propositions 2.1.2 and

3.2.2, we know there exists a connected open interval Vx ⊂ Lj so that Vx = B−1j (Px). We

again define maps lUx,j : Ox → B−1j (Px) so that for w ∈ Px, we have lUx,j(π0,j(w)) = B−1j (w),

and the composition functions ϕUx,j = lUx,j ◦π0,j ◦ ηj ◦ g ◦ B̃|Ux agree whenever their domains

(connected open neighborhoods Ux and Uy, or the vertical path components of said neigh-

borhoods) overlap.
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Ux ⊂ Lω Lj

L′ L′ Kj

C0,j

B̃ Bj

g ηj

π0,j

lUx,j

Thus we get a well-defined map ϕj : Lω → Lj defined by ϕj(x) = ϕUx,j(x). We also have

ϕj(x) = (lUx,j ◦ π0,j ◦ ηj ◦ g ◦ B̃)(x) = (B−1j ◦ ηj ◦ g ◦ B̃)(x) = B−1j (ηj(g(B̃(x)))) = B−1j (kj),

where kj is the j-th component of the coherent sequence g(B̃(x)) ∈ L′.

Lω Lj

L′ L′ Kj

γj=B
−1
j ◦ηj◦g◦B̃

B̃

g ηj

B−1
j

We must show that Lω along with the maps ϕj are compatible with the inverse system

(Lω, γj). To this end, let x ∈ Lω be arbitrary and observe that g(B̃(x)) ∈ L′, so we can

write g(B̃(x)) = (. . . , k1, k0) where Hj(kj+1) = kj for all j. Also, we note that ηj(g(B̃(x))) =

ηj(. . . , k1, k0) = kj.

We have the following diagram

Lj+1 LJ

Kj+1 Kj

γj

Bj+1 Bj

Hj

Then, Bj(γj(B
−1
j+1(kj+1))) = Hj(kj+1) = kj implying γj(B

−1
j+1(kj+1)) = B−1j (kj), which is

equivalent to γj(ϕj+1(x)) = ϕj(x). So Lω along with the maps ϕj are compatible with

the inverse system (Lj, γj), so be the universal mapping property, we get a unique map

φ = lim←−ϕj : Lω → Lω given by the formula φ(x) = (. . . , ϕ1(x), ϕ0(x)), where we sup-

press the sequence notation for x ∈ Lω. We show that φ = B̃−1 ◦ g ◦ B̃. Fix x ∈ Lω,

we again write g(B̃(x)) = (. . . , k1, k0), so that ηj(g(B̃(x))) = kj . Then, (B̃−1 ◦ g ◦
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B̃)(x) = B̃−1(g(B̃(x))) = B̃−1((. . . , k1, k0)) = (. . . , B−11 (k1), B
−1
0 (k0)); however φ(x) =

(. . . , ϕ1(x), ϕ0(x)) = (. . . , B−11 (η1(g(B̃(x))))), B−10 (η0(g(B̃(x))))) = (. . . , B−11 (k1), B
−1
0 (k0)).

This completes the proof.

3.4 The Warsawanoid is a Sharkovskii Space

We have the following theorem.

Theorem 2 If g : L′ → L′ is continuous, then it has the Sharkovskii Property. Therefore,

L′ is a Sharkovskii Space.

Proof: Lω is a Sharkovskii Space [21]. Thus, the map B̃−1 ◦ g ◦ B̃ : Lω → Lω has the

Sharkovskii Property.

Lω Lω

L′ L′

B̃−1◦g◦B̃

B̃ B̃

g

The orbits of B̃−1 ◦ g ◦ B̃ are in one-to-one correspondence with the orbits of g, as in the

proof of Theorem 1.2. Thus, g also has the Sharkovskii Property, and L′ is a Sharkovskii

Space.
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